ELECTRICAL ENGINEERING CALCULATOR **VOLTA-814**

FOR MICROSOFT[®] WINDOWS[™] 7/8

USER MANUAL

VERSION 8.14.0.3

REVISED: 01/08/2019 By: William Yap https://williamyaps.github.io

Document is subject to change without notice. All information is provided on 'Al' basis without warranty of any kind. All sample screenshots are provided for demo purpose only and may be slightly different from the actual layout.

KEY FEATURES

- \circ ~ Electrical engineering calculator for windows ^m 7/8 ~
- DESKTOP PC AND MOBILE PLATFORMS COMPATIBLE
- INTUITIVE LAYOUT AND ERGONOMIC DESIGN
- O DUAL PC MOUSE AND TOUCH-SCREEN OPERATIONAL MODE
- O ON-SCREEN MEMORY REGISTER FOR BETTER USER EXPERIENCE
- ARITHMETIC AND PERCENTAGE CALCULATION
- ALGEBRAIC FUNCTIONS
- LOGARITHMS AND EXPONENTS
- TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS
- USEFUL CONSTANTS INCLUDING "SIGMA" VALUES
- $\circ~$ Electrical Engineering (EE) functions $\circ~$
- E6...E192 REFERENCE TABLES (EE)
- UNIQUE "BEST FIT" COMPUTATION (EE)
- TEXT AND IMAGE ROTATOR (UPDATES DAILY)

VOL	IA-81	4													-		
LECTRIC	AL ENG	INEER	ING CA	LCULA	TOR							A	KEEP A P	OSITIVE WO	ORK/LIFE B	ALANCE!	
3.14159265358979 deg													CE	AC	deg	Ĥ	
2.71828182845905										CM		M+		M*			
7				K		м	*G) *n		*μ	*n					÷	
					2	π	π/2	π/:	3	π/6	180/π					√x	
					- Ig	(e)	ln(10)	1								ln	
					2	o	3σ	40								acos	
												sec	CSC	sinh	cosh	sech	csch
1.00	1.05	1.10	1.15	1.21	1.27	1.33	1.40	1.47	1.54	1.62	1.69			w>F		Zc[60]	
1.78	3.32	1.96 3.48		3.83	4.02	4.22	2.49 4.42	2.61 4.64	4.87	2.87 5.11	3.01 5.36	R∥r	Fit R	Fit R/R	Fit RR	Zc(50)	ZL(50)
5.62		6.19	6.49	6.81	7.15	7.50		8.25	8.66			E6	E12	E24	E48	E96	VE192

FIGURE 1: ENGINEERING CALCULATOR VOLTA-814, SAMPLE SCREENSHOT

Copyright© 2019 William Yap

¹ Actual layout may be slightly different from the sample screenshots

CONTENTS

OVERVIEW4
OS backward compatibility4
Optional Internet connectivity4
SETUP / UNINSTALL
INSTALL5
UNINSTALL5
BASIC INFO5
DESCRIPTION
On-Screen Memory Register7
Unary and Binary operations7
Electrical Engineering (EE) unary functions8
Electrical Engineering (EE) binary operations:8
Standard E-Series Reference Tables8
SAMPLE COMPUTATIONS9
Chain Operations9
Example 1: Calculate (3.5 x 4 + 7)9
Percentage calculations9
Example 2: Calculate 4% of 6.959
Example 3: Increase the value of 6.95 by 4%9
Electrical Engineering Computations10
Example 4: Calculate equivalent resistance of 2kOhm and 3kOhm resistors, connected in parallel circuit10
Example 4: Calculate equivalent resistance of 2kOhm and 3kOhm resistors, connected in parallel circuit
Example 4: Calculate equivalent resistance of 2kOhm and 3kOhm resistors, connected in parallel circuit
 Example 4: Calculate equivalent resistance of 2kOhm and 3kOhm resistors, connected in parallel circuit
 Example 4: Calculate equivalent resistance of 2kOhm and 3kOhm resistors, connected in parallel circuit
 Example 4: Calculate equivalent resistance of 2kOhm and 3kOhm resistors, connected in parallel circuit
Example 4: Calculate equivalent resistance of 2kOhm and 3kOhm resistors, connected in parallel circuit
 Example 4: Calculate equivalent resistance of 2kOhm and 3kOhm resistors, connected in parallel circuit
Example 4: Calculate equivalent resistance of 2kOhm and 3kOhm resistors, connected in parallel circuit

OVERVIEW

Electrical Engineering **Calculator VOLTA-814** (hereinafter – **CALCU LATOR VOLTA**) in a context of this User Manual refers to the productivity application software package for Microsoft[®] Windows[™] operating system (OS) versions 7 or 8.

Target audiences for **CALCULATOR VOLTA** include high-school, college and university students, educators and engineering professionals (in particular, EE/CS and electronic design). Feature matrix, HW/OS requirements and edition availability information is presented in the following table:

Feature/Edition	VOLTA-814T ²	VOLTA-814	VOLTA-814P ³
Edition	Trial	Standard	Professional
Form factor (PC)	Desktop Notebook Tablet	Desktop Notebook Tablet	Desktop Notebook Tablet
OS	Windows 7 or 8	Windows 7 or 8	Windows 7 or 8
Screen Size	7" and up	7" and up	7" and up
Screen Resolution	> 1024 x 600	> 1024 x 600	> 1024 x 600
Touch screen supported	YES	YES	YES
Arithmetic operations	YES	YES	YES
Scientific Functions	YES	YES	YES
Engineering Functions	YES	YES	YES
E-Series Tables (RLC)	YES	YES	NO
Calculation log ⁴	NO	NO	YES
Availability	YES	YES	NO

OS BACKWARD COMPATIBILITY

CALCU LATOR VOLTA-814 is built on a leading-edge technology set corresponding to Microsoft .NET 4.0 framework. It is optimized to run on WINDOWS 7/8 (INCLUDING 8.1), and is also backward compatible with previous OS versions (e.g. WINDOWS VISTA), though it may require certain NET 4.0 components to be installed on User's PC.

OPTIONAL INTERNET CONNECTIVITY

CALCU LATOR VOLTA -814 can operate completely autonomously in a stand-alone mode without any Internet connection. However, Internet connectivity may extend User Experience, providing access to some optional online resources.

² Has expiration date

³ Under development: tentatively scheduled for Y2015

⁴ Calculation history log feature: planned for Pro edition only

SETUP / UNINSTALL

INSTALL

CALCU LATOR V OL T A setup procedure should typically take less that couple minutes. It can be completed using standardized Windows installer in several simple steps:

- Copy the content of installation package into any PC directory •
- Locate and run setup.exe file •
- Follow the on-screen instructions; the on-screen dialogs provide basic ReadMe • information, offer some setup customization options and also may require the user to accept the EULA.
- Upon successful installation, the shortcut icon (see Fig.2) linked to the application should appear on PC desktop. Similar icon of smaller size should also appear in Program Menu (Start button ->All Programs)

FIGURE 2: SHORTCUT DESKTOP ICON LINKED TO CALCULATOR VOLTA-814 APPLICATION

UNINSTALL

In order to UNINSTALL this software use "Programs and Features" option in MICROSOFT WINDOWS "Control Panel"; double click the item titled 'Calculator Volta-814".

BASIC INFO		_						
	User Manual			4	About'	Form		
VOLTA-814					\checkmark	- +		$\setminus \times$
ELECTRICAL ENGINEERING CALCULATOR			A		DSITIVE WO	ORKALIFE B	ALANCE!	\ _i
3.14159265358979	deg			CE	AC	deg		_
2.71828182845905								
7 8 9 *k *M	*G *m *µ	*n						
4 5 6 π 2π	π/2 π/3 π/6							
1 2 3 e lg(e)	In(10) √2 √3	¢						
0.σ2σ	3σ 4σ 5σ	6σ						
1.00 1.05 1.10 1.15 1.21 1.27 1.33 178 1.87 1.96 2.05 2.15 2.26 2.37	1.40 1.47 1.54 1.62 2.49 2.61 2.74 2.87						Zc[60]	
3.16 3.32 3.48 3.65 3.83 4.02 4.22								
	7.87 8.25 8.66 9.09							
©2014 Infosoft International Inc						Made ir		A

Copyright© 2019 William Yap

DESCRIPTION

CALCU LATOR V OL T A has intuitive Graphical User Interface (GUI) comprised of Input Box, Memory Register and multiple on-screen virtual buttons grouped into several functional areas as shown in the following sample screenshot (see Fig 3).

FIGURE 3: CALCULATOR VOLTA-814 SAMPLE SCREENSHOT

Input Box located under the main title; in this sample screenshot it displays number π rounded to 14 decimal digits. Text/Image rotator located to the right main title updates daily, adding some "spice" to the user experience (warning: some humor included! Possible side effect – LOL/ROFL, even LMAO :-).

Memory register marked with label **M** resides under Input Box. In this sample it displays the value of number e (base of the natural logarithm) rounded to 14 decimal digits.

On-screen buttons are grouped into several virtual keypads with distinctive color-coding corresponding to their functional area:

Numeric buttons 0 ... 9 and the decimal point button have dark-color background.

Multipliers button group with dark-color gradient background include:

0	k (kilo)	x1,000
0	M (Mega)	x1,000,000
0	G (Giga)	x1,000,000,000
0	m (mini)	1/1,000
0	μ (micro)	1/1,000,000
0	n (nano)	1/1,000,000,000

Useful Constants area comprised of the buttons with dark-gradient background; its functionality is intuitively clear with probably only exception for the value prepresenting so-called "golden ratio": (**V5 +1**) **/2** (refer to [2] for detailed explanation).

1*a*...6*a* group (aka "Sigma" group) corresponds to the defects rate (or, more accurately, probability of defects normalized on scale 0...1). The group is located below constants area, and is also marked with dark-gradient background.

Reference Tables E6...E192 in this particular screenshot displays 48 numbers corresponding to the selected E48 standard series [3].

Memory Move To/From on-screen buttons marked as and with dark-gray background reside within Input and Memory boxes, correspondingly.

Memory operations group contains buttons with dark-blue color gradient background.

Arithmetic operations buttons also have dark-blue color gradient background.

Scientific functions buttons have dark-blue color gradient background, as well.

Clear operation buttons, namely:

•	÷	Backspace
•	CE	Clear Entry
•	AC	All Clear
•	CM	Clear Memory

are all marked with dark-red color gradient background.

Electrical Engineering (EE) functional area contains on-screen buttons with dark-green color gradient background.

TIP: MOVE THE CURSOR OVER ANY ON-SCREEN BUTTON TO POP-UP ITS CORRESPONDING TOOLTIP

ON-SCREEN MEMORY REGISTER

CALCU LATOR VOLTA implements on-screen Memory register as an additional convenience feature, providing the ability to see the values in the input box and memory register simultaneously.

UNARY AND BINARY OPERATIONS

On a conceptual/abstract level, all functionality implemented in **CALCULATOR VOLTA** is represented by two major types of operations, namely: Unary and Binary operations.

As implied by name, Unary operations take a single number and return a single result. Mathematically speaking, they represent the functions accepting a single argument (or no argument at all pertinent to the case of entering constant values). Examples of Unary operations include: inverse operation 1 / x), square (x^2), majority of trigonometric, hyperbolic, exponential and logarithmic functions. In a practical aspect, all these operations can be completed by a single button click.

Binary operations are performed on two numbers. From mathematical point of view, they represent functions of 2 arguments, which include:

4 BASIC ARITHMETIC OPERATIONS:

- Add +
- Subtract -
- Multiply **x**
- Divide ÷

PERCENTAGE OPERATIONS (%) RAISING TO POWER OPERATION (Yx)

Specific Electrical Engineering (EE) functions of Unary/Binary types are discussed in the next sub-chapter.

ELECTRICAL ENGINEERING (EE) UNARY FUNCTIONS

As mentioned before, EE functions can be of either Unary or Binary operations. The following list refers to the Unary EE operations:

- **ZC(60)**Capacitive Impedance (C) corresponding to **60** Hz/AC (USA)
- o ZL(60)Inductive Impedance (L) corresponding to 60 Hz/AC (USA)
- **ZC(50)**Capacitive Impedance (C) corresponding to **50** Hz/AC (Europe)
- o **ZL(50)**Inductive Impedance (L) corresponding to **50** Hz/AC (Europe)
- \circ **F** > ω Ordinary (cyclic) to Angular (radian) Frequency conversion
- $\circ \quad \omega > FAngular$ (radian) to Ordinary (cyclic) Frequency conversion
- Fit(R)Best Fit Resistance: returns single value from E-Series
- Fit(R/R)Best Fit Ratio: returns 2 E-Series values
- Fit(RR) Best Fit Resistance2: returns 1 or 2 E-Series value(s), circuit topology

Listed below are EE Binary operations implemented in CA LCULATOR V O LT A

ELECTRICAL ENGINEERING (EE) BINARY OPERATIONS:

- Electrical Power \mathbf{U}^2/\mathbf{R}
- Equivalent resistance of 2 Resistors in parallel circuit $\mathbf{R} || \mathbf{r}$
- Resonant Frequency of LC circuit F(LC)

STANDARD E-SERIES REFERENCE TABLES⁵

- **E6** (20% tolerance; rarely
- used) \circ **E12** (10% tolerance)
- **E24** (5% tolerance; frequently used)
- **E48** (2% tolerance)
- ○E96 (1% tolerance)
- oE192 (better than 0.5% tolerance)

⁵ For more information on standard E-Series refer to Reference section [3]

SAMPLE COMPUTATIONS

Following samples demonstrate some non-trivial computation technique.

CHAIN OPERATIONS

Chain operations refer to multiple arithmetic operations to be completed in sequence, as shown in the following Example 1:

EXAMPLE 1: CALCULATE (3.5 x 4 + 7)

- Enter the number **3.5** using on-screen numeric keypad
- Click on the **x** button
- Enter the number **4**
- Click on the + button; intermediate result (14) will appear
- Enter the number 7
- Click on the = button to get the final result (21)

Notice, that chain operations continue until = button is pressed, which works as a "chain operations terminator".

PERCENTAGE CALCULATIONS

Example 2: Calculate 4% of 6.95

- Enter the number 6.95 using on-screen numeric keypad
- Click on the Multiply (x) button
- Enter the number **4** using on-screen numeric keypad
- Click on Percentage (%) button to get the result: 0.278

EXAMPLE 3: INCREASE THE VALUE OF 6.95 BY 4%

- Enter the number 6.95 using on-screen numeric keypad
- Click on the + button
- Enter the number **4** using on-screen numeric keypad
- Click on Percentage (%) button to get the result: 7.228

Example 3 actually calculates the value of **6.95 x (1+0.04)**; it demonstrates the "shortcut" technique as an alternative to the trivial "long way" solution, which implies storing the number **6.95** in Memory, then finding **4%** of **6.95** as described in Example 2, and then adding that intermediate result (**0.278**) to the value stored in Memory in order to get the final result (**7.228**).

ELECTRICAL ENGINEERING COMPUTATIONS

EXAMPLE 4: CALCULATE EQUIVALENT RESISTANCE OF **2**KOHM AND **3**KOHM RESISTORS, CONNECTED IN PARALLEL CIRCUIT

- Enter the number 2 using the on-screen numeric keypad
- Click on multiplier $* \kappa$ resulting in the value shown as: 2000
- Click on the button **R** | | R
- Enter the second Resistor's value 3
- Click on multiplier button *** κ** (the number **3000** should appear)
- Finally, click on the button = to get the result: 1200 (corresponding to 1.2кОнм as per normal EE notation)

Example 5: Calculate the AC impedance of **1.5** UF capacitor connected to **60** Hz AC

- Enter the number 1.5 using the on-screen numeric keypad
- Click on multiplier *µ button to convert the value to 0.0000015 (or 1.5E-06)
- Click on the button Zc(60) to get the results in Ohm: 1768.38825657662
- Optionally, click on the button *m to get result in kOhm (1.76838825657662)

Example 6: Calculate resonant frequency of parallel LC circuit provided that: L=2mH, C=3nF

- Enter the number 2 using the on-screen numeric keypad
- Click on multiplier *m so the value should become: 0.002
- Click on **F**(**LC**) button
- Enter number 3
- Click on the button *n so the value should become: 3E-9
- Click on the button = to get the result: 64974.7334361397 Hz
- Optionally, click on the button *m to get result in kHz (64.9747334361397)

EXAMPLE 7: CALCULATE ELECTRIC POWER DISSIPATED BY 2 OHM RESISTOR CONNECTED TO 5V VOLTAGE SOURCE

- Enter the number **5** for Voltage using the on-screen numeric keypad
- Click on U^2/R button
- Enter the Resistor's value in Ohm, namely: 2
- Click on the button = to get the result: **12.5** W

Tip: if Current is given instead of voltage, then simply calculate Voltage V by applying Ohm's law ($V=I \ x \ R$), then use the technique described above

Example 8: Calculate electric power dissipated by 2 Ohm Resistor corresponding to current through of 2.5 A

- Enter the number **2** for Resistance (in Ohm)
- Click on "To Memory" button V
- Click on "multiply" button x
- Enter the number 2.5 for Current (in A)
- Click on U^2/R button
- Click on "from Memory" button
- Click on the button = to get the result: 12.5 W

EXAMPLE 9: FIND BEST FIT VALUE FOR **31.4159265359879** OHM RESISTANCE FROM E48 STANDARD SERIES⁶

• Enter target value normalized on 1...10 scale, i.e. 3.14169265359879

Tip: In this example, you can just press the key π

- Click on E48 button; E-Series table should display corresponding values
- Click on Fit(R) button to get normalized result in Memory box formatted as:
 [E48] R=3.16 (Err=0.586%)

VOLT	A-814	D		ECTRIC/	AL ENG	INEERIN	G CALC	ULATO			SP	ŤI	HERE'S NO	PLACE LIKI	E 127.0.0	
3.14159	2653	5897	79						CE	AC	deg					
E48 R=3.16 (Err=0.586%)											СМ				M*	
7	8		*k		M		*m		*µ							
4	5		π	2	in I	π/2	π/	3	π/6	180/π	int	1/x				∛ >
1	2		е	lg	(e)	In(10)	√2	2	√3	ф			10'			lg
			σ	2	σ	Зσ	40	,	5σ	6σ	sin		tan	asin	acos	ata
E48											sec	CSC	sinh	cosh	sech	csc
1.00 1.0	5 1.10	1.15	1.21	1.27	1.33	1.40	1.47	1.54	1.62	1.69					Zc[60]	
3.16 3.3	2 3.48	3.65	3.83	4.02	4.22	4.42	4.64	4.87	5.11	5.36	R. r	Fit R	Fit R/R	Fit RR	Zc(50)	ZL(5
5.62 5.9	0 6.19	6.49	6.81	7.15	7.50	7.87	8.25	8.66	9.09		E6	E12	E24	E48	E96	E19

• De-normalize result to get the actual best fit value of: **31.6** Ohm

FIGURE 4: SAMPLE BEST FIT R CALCULATION

TIP: DOUBLE-CLICK ON ANY VALUE IN THE E-SERIES TABLE TO MAKE IT APPEAR IN THE INPUT BOX

 $^{^6}$ The number may look seemingly weird, but it actually corresponds to 10π

EXAMPLE 10: FIND 2 RESITORS FROM E96 TO BEST FIT RATIO OF 5

- Enter the target ratio number: 5
- Click on E96 button: E-Series table should display corresponding values
- Click on Fit(R/R) button to get result in Memory box in the following format:
 [E96] R1/R2=6.65/1.33=5 (Err=0%)

V	OLT	A-8	314[\mathbf{b}			TRICA	LEN	GINEE	RING	CALC	ULAT	OR			SU		HERE'S NO	PLACE LIK	E 127. 0. 0	
5													d	leg [•	CE	AC	deg		
E96	R1,	/R2=	6.6	5/1.3	33=!	5 (Er	r=0°	%)						м [СМ			M-	M*	=
						*k	*	M	*0	3	*m		*μ		*n						
						π	2	π	π/	2	π/3		π/6		180/π						∛x
				3		e	lg	(e)	In(1	.0)	12		√3		ф						
	0			•		σ	2	σ	30	J	4σ		5σ		6 0			tan	asin	acos	ata
E96				1 10			1 18		1.74	1.27	1.30		1 27	1.40	1 43	sec	CSC	sinh	cosh	sech	CSC
								1.78												Zc[60]	
2.15	2,21	2.26	2.32	2.37	2.43	2.49	2.55	2.61	2.67		2.80	2.87	2.94	3.01	3.09			(site of		74/500	71.45
4.64	4.75		4.99	5.11			5.49	5.62		5.90	6.04	6.19	6.34	6.49		will t	FILK	FIL R/R	FIERR	20(50)	21(5)
								8.25	8.45	8.66											

FIGURE 5: SAMPLE BEST FIT RATIO CALCULATION

Result shown in Memory box can be interpreted as a pair of resistance values **6.65** and **1.33** taken from **E96** standard series, providing the best fit to the target ratio of **5** (calculated relative error: 0%).

TIP: DOUBLE-CLICK ON ANY VALUE IN THE E-SERIES TABLE TO MAKE IT APPEAR IN THE INPUT BOX

Example 11: Find Best Fit for 271.828182845905 Ohm

Resistance using 1 or 2 E24 Resistors⁷

• Enter the target value normalized on 1...10 scale, i.e. 2.71828182845905

Tip: In this example, you can just press the key ${\bf e}$

- Click on E24 button (E-Series table should display corresponding value set)
- Click on Fit(RR) button to get result in Memory box in the following format:
 [E24 Par] 11.0, 3.6 (R=2.712; Err=-0.219%)

Note: Result can be interpreted as a pair of Resistors with normalized values of **11** and **3.6** taken from E24 standard series, connected in parallel circuit, providing the best fit to the target Resistance of. Calculated value is **2.712**, relative error: -0.219%. |Par| indicates parallel, |Ser| corresponds to series circuit topology.

>																\$ -	□×
(vc	DLTA-	814	D		ECTRIC	AL ENG	SINEERIN	G CALC	ULATC			SU		HERE'S NO	PLACE LIK	E 127. 0. 0.	
2.71	8281	828	459(05						deg			CE	AC	deg		
[E24 P	Par 11	0, 3.	.6 (R=	2.712	; Err=	=-0.2	19%)			м		СМ		M+	M-	M*	=
7	8			*k		*M	*G	*n	۰ [*μ	*n						
4	5			π		2π	π/2	n /	3	π/6	180/π	int					
1	2				k	g(e)	ln(10)		2	√3	¢						
	0					20	30	40			6a	sin	cos	tan	asin	acos	atan
E24												sec	csc	sinh	cosh	sech	csch
1.0	1.1	1.2	1.3	1.5	1.6	1.8	2.0	2.2	2.4	2.7	3.0					Zc[60]	ZL(60)
	26	20	4.2	4.7		E.C.		6.0	7.5	0.2			Fit R	Fit R/R	Fit RR	Zc(50)	ZL(50)
3.3	5.6	3.9	4.3	4.7	5.1	5.6	6.2	6.8	7.5	8.2	9.1	E6	E12	E24	E48	E96	E192
©2013 In	ifosoft Ir	nternati	ional Inc	link											Made in	New York	1.

• Finally, de-normalize values (multiply both by factor of 100) resulting in: **360** Ohm and **1100** Ohm (**1.1** kOhm)

FIGURE 6 BEST FITRR SAMPLE CALCULATION (RETURNS EITHER 1 OR 2 RESISTORS)

TIP: DOUBLE-CLICK ON ANY VALUE IN THE E-SERIES TABLE TO MAKE IT APPEAR IN THE INPUT BOX

 $^{^{7}}$ The number may look seemingly weird, but it actually corresponds to 100 ${\rm e}$

REFERENCES

- 1. Engineering Calculator VOLTA, product page
- 2. <u>Golden ratio (wiki)</u>
- 3. Preferred number (wiki)

LIST OF TERMS AND ACRONYMS

CS	Computer Science
EE	Electrical Engineering
EULA	End-User License Agreement
E6E192	Standard values for RLC components
GUI	Graphical User Interface
OS	Operating System
РС	Personal Computer
RLC	Resistors, Inductors, Capacitors (electric components)
UI	User Interface
UX	User eXperience